基于深度学习的图像拼接篡改检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13700/j.bh.1001-5965.2019.0583

基于深度学习的图像拼接篡改检测

引用
传统图像拼接检测算法通过研究人员手动构造拼接特征,随着科技的进步以及图像处理技术的不断发展,手动构造特征的局限性逐渐体现出来,鲁棒性较弱,位置不易确定等.为了解决这些问题,构建了一种卷积神经网络(CNN),将卷积核前置并固定,自主学习相关特征从而检测拼接篡改的图像区域.经过一系列研究,发现拼接篡改图像的拼接篡改区域特征可以被CNN模型学习.在CNN模型之前,卷积核使用高通滤波器,激活函数采用指数线性单元(ELU),使得CNN模型具有识别拼接篡改图像边缘痕迹等特征的能力.检测结果表明:在IEEE IFS-TC图像拼接取证竞赛训练集上对拼接篡改图像拼接篡改区域定位的准确率为84.3%,对拼接篡改区域判定的真负类率为96.18%.

卷积神经网络(CNN)、图像拼接取证、深度学习、指数线性单元(ELU)、损失函数

46

TP751;TP183(遥感技术)

2020-05-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

1039-1044

相关文献
评论
暂无封面信息
查看本期封面目录

北京航空航天大学学报

1001-5965

11-2625/V

46

2020,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn