基于L2范数最小化联合模型的目标跟踪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13700/j.bh.1001-5965.2014.0455

基于L2范数最小化联合模型的目标跟踪算法

引用
为了解决稀疏表示的跟踪算法的计算代价比较大,且目标的表观由于多种原因会发生变化的问题,提出了一种在贝叶斯推理框架下,建立结合基于全局模板的判别式模型和基于局部描述子的生成式模型的联合模型,通过L2范数最小化进行求解的目标跟踪方法.在跟踪过程中,适时地更新判别式模型中的正负模板和生成式模型中模板的系数向量,使模板具有很强的适应性和判别性.实验结果表明,与其他典型的算法相比,该算法对于光照变化、尺度变化、遮挡、旋转等情况具有较强的鲁棒性.

目标跟踪、L2范数最小化、判别式模型、生成式模型、子空间

41

V123.4

国家自然科学基金;国家自然科学基金;江苏省自然科学基金;江苏省自然科学基金

2017-01-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

559-566

相关文献
评论
暂无封面信息
查看本期封面目录

北京航空航天大学学报

1001-5965

11-2625/V

41

2015,41(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn