基于快速退火MRF的改进SAR图像分割方法
基于Markov随机场(MRF,Markov Random Field)的SAR图像分割方法利用了SAR图像的灰度和结构信息,能在分割过程中有效抑制斑点噪声,获得较高的分割精度.但这类方法的缺点是模拟退火的计算量很大.针对该问题,提出了一种基于快速退火MRF的SAR图像分割处理方法.该方法根据SAR图像Gibbs分布的特性,在求取全局最优解时,首先寻找邻域系统中占有支配地位的某种标记,若存在占支配地位的标记,用此标记更新状态;反之,则沿用传统模拟退火的方法随机更新状态.由于该方法引入基于Gibbs分布的先验判决进行系统状态更新,因此能够快速求得全局最优解.最后对真实SAR图像进行处理,处理结果验证了算法的有效性.
合成孔径雷达、图像分割、模拟退火、算法
36
TN957.52
2017-01-18(万方平台首次上网日期,不代表论文的发表时间)
共4页
719-722