基于改进多核学习的多传感数据分类方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13543/j.bhxbzr.2020.03.013

基于改进多核学习的多传感数据分类方法研究

引用
物联网(internet of things,IoT)技术中结合多个数据源互补信息提高数据分类准确率的研究受到了越来越多的关注.针对物联网无线传感器采集到数据的多源异构特性,给出了一种基于改进多核学习支持向量机(improved multi-kernel learning-support vector machine,IMKL-SVM)的IoT数据分类方法.传统的多核学习方法中核函数主要是采用经验法选取核函数类型及参数,本文改进方法在确定核函数类型及参数时分为两步:首先采用交叉验证方法初步确定核函数类型及参数;其次在第一步结果中利用支持向量机(SVM)同时训练样本和优化多核函数的类型及参数.实验中针对温度、湿度、光照、大气压力等4种数据设计了两组数据——第一组数据被标记为上午、中下午、傍晚、夜间4类,第二组数据被标记为白天、傍晚、夜间3类,比较了本文的IMKL-SVM方法、单核SVM方法及传统MKL-SVM方法在两组数据集上的分类准确率.此外,针对UCI公开数据集AReM进行了分类实验,实验结果表明IMKL-SVM方法针对具有多源异构特性的物联网数据实现了较高的分类准确率.

物联网(IoT)、多核学习(MKL)、支持向量机(SVM)、多源异构

47

TP391.44(计算技术、计算机技术)

国家自然科学基金;中央高校基本科研业务费

2020-08-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

100-106

相关文献
评论
暂无封面信息
查看本期封面目录

北京化工大学学报(自然科学版)

1671-4628

11-4755/TQ

47

2020,47(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn