基于CART决策树的柴油机故障诊断方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13543/j.bhxbzr.2018.04.013

基于CART决策树的柴油机故障诊断方法研究

引用
采用一种自适应局部有效值(RMS)计算方法提取柴油机缸盖振动信号时域特征,结合分类回归树(CART)算法建立故障分类模型并进行柴油机的状态识别.通过实验获取柴油机失火和撞缸两种故障工况及正常工况下的振动数据,计算出原始信号的局部RMS后,根据自适应阈值确定点火冲击区域和非点火上止点冲击区域提取局部特征,最后将特征输入CART算法中构建分类模型来验证所提取特征的有效性.结果表明:柴油机在3种状态下的识别率均达到100%,基于CART算法和局部特征提取的方法能够有效诊断柴油机故障.

分类回归树(CART)算法、柴油机故障诊断、局部有效值(RMS)计算、自适应阈值、特征提取

45

TP391.4(计算技术、计算机技术)

国家“863”计划2014AA041806;国家重点研发计划2016YFF0203305;中央高校基本科研业务费JD1815

2018-08-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

71-75

相关文献
评论
暂无封面信息
查看本期封面目录

北京化工大学学报(自然科学版)

1671-4628

11-4755/TQ

45

2018,45(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn