基于ReliefF-PCA和SVM的发动机故障诊断方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13543/j.bhxbzr.2018.01.009

基于ReliefF-PCA和SVM的发动机故障诊断方法研究

引用
针对柴油发动机机组振动信号非线性和非平稳性以及机组实际故障案例样本数据少的特点,提出了一种基于ReliefF、主成分分析(PCA)以及支持向量机(SVM)的柴油发动机故障诊断方法.首先提取发动机冲击信号的特征参数,运用ReliefF选择出其中的敏感特征以降低处理过程的计算难度;然后采用PCA进一步提取敏感特征,消除各特征之间的相关性,避免冗余;最后利用SVM实现机组的故障分类,诊断不同类型的故障.将本文方法应用于柴油机实际典型故障案例中,结果表明该方法能有效提取柴油机缸盖振动信号中的故障敏感特征,并实现多种典型故障的诊断.

柴油发动机、故障诊断、ReliefF、主成分分析(PCA)、支持向量机(SVM)

45

TP206.3(自动化技术及设备)

国家“863”计划2014AA041806;中央高校基本科研业务费ZY1617

2018-03-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

55-59

相关文献
评论
暂无封面信息
查看本期封面目录

北京化工大学学报(自然科学版)

1671-4628

11-4755/TQ

45

2018,45(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn