面向武器装备领域的复杂实体识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13209/j.0479-8023.2021.118

面向武器装备领域的复杂实体识别

引用
针对武器装备领域复杂实体的特点,提出一种融合多特征后挂载武器装备领域知识的复杂命名实体识别方法.首先,使用BERT模型对武器装备领域数据进行预训练,得到数据向量,使用Word2Vec模型学习郑码、五笔、拼音和笔画的上下位特征,获取特征向量.然后,将数据向量与特征向量融合,利用Bi-LSTM模型进行编码,使用CRF解码得到标签序列.最后,基于武器装备领域知识,对标签序列进行复杂实体的触发检测,完成复杂命名实体识别.使用环球军事网数据作为语料进行实验,分析不同的特征组合、不同神经网络模型下的识别效果,并提出适用于评价复杂命名实体识别结果的计算方法.实验结果表明,提出的挂载领域知识且融合多特征的武器装备复杂命名实体识别方法的F1值达到95.37%,优于现有方法.

武器装备、复杂命名实体识别、郑码、领域规则、BERT、评价方法

58

TP391;TP183;G206.3

2022-06-23(万方平台首次上网日期,不代表论文的发表时间)

共14页

391-404

相关文献
评论
暂无封面信息
查看本期封面目录

北京大学学报(自然科学版)

0479-8023

11-2442/N

58

2022,58(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn