面向问答领域的数据增强方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13209/j.0479-8023.2021.112

面向问答领域的数据增强方法

引用
针对当前自动问答数据增强方法需要大量外部数据的问题,提出一个面向问答模型缺陷的数据增强方法.首先,在训练集上训练好问答模型、问题生成模型以及问答匹配模型;然后,获取问答模型在训练集上预测的所有答案,并选取其中预测错误的答案;再后,使用问题生成模型对这些答案生成相应问题;最后,通过问答匹配模型对生成的问答对进行过滤,保留其中质量较高的数据作为最终的增强数据.该方法不需要额外的数据与领域知识,同时能够针对模型构造特定数据,耗费较少的训练代价就能使模型性能提升.实验结果表明,所提出的数据增强方法对R-Net,Bert-Base以及Luke均有效,与其他数据增强方法相比,在较少的增强数据规模下,问答模型获得更好的性能提升.

数据增强;问题生成模型;自动问答模型;质量控制

58

国家自然科学基金62176174

2022-02-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

54-60

相关文献
评论
暂无封面信息
查看本期封面目录

北京大学学报(自然科学版)

0479-8023

11-2442/N

58

2022,58(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn