利用人工智能神经网络预测广州市PM2.5日浓度
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13209/j.0479-8023.2021.050

利用人工智能神经网络预测广州市PM2.5日浓度

引用
利用差分整合移动平均自回归模型(ARIMA)、后向传播神经网络(BP)以及长短期记忆神经网络(LSTM),对广州市2015—2019年的PM2.5浓度数据进行训练和预报,研究集合经验模态(EEMD)分解和时间分辨率对不同模型预报准确性的影响.结果表明,EEMD分解可以显著地提升低频分量的预报效果;提高输入数据的时间分辨率可以提升预报效果,尤其在ARIMA自回归模型预报中较为明显,用神经网络进行预报时需要考虑输入数据量增加带来模型复杂度增加的问题.由于模型使用前一天(t?1)的PM2.5作为输入数据,即只能预报t+1天的PM2.5值.为增加模型的预报时效,采用滚动预报的方式对模型进行优化,能够显著地提升预报时效,实现对t+n天的连续预报,且预报误差与后报结果相当.将时间精度为6 h的数据作为输入,用ARIMA模型进行预报的效果最好,最小MAE值为6.478.

广州市;PM2.5;整合移动平均自回归模型(ARIMA);后向传播神经网络(BP);长短期记忆神经网络(LSTM);集合经验模态分解(EEMD)

57

广东省重点领域研发计划;国家自然科学基金;广西壮族自治区特聘专家专项经费

2021-08-27(万方平台首次上网日期,不代表论文的发表时间)

共8页

645-652

相关文献
评论
暂无封面信息
查看本期封面目录

北京大学学报(自然科学版)

0479-8023

11-2442/N

57

2021,57(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn