时间精度与空间信息对神经网络模型预报PM2.5浓度的影响
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13209/j.0479-8023.2020.012

时间精度与空间信息对神经网络模型预报PM2.5浓度的影响

引用
以北京市为例,利用2015—2018年空气质量监测站台资料,通过BP神经网络、LSTM网络及CNN-LSTM混合模型等多种模型,分析时间精度和空间信息对PM2.5浓度预报的影响.结果表明,神经网络模型的效果普遍比多元线性回归模型好;增加输入数据的时间精度能显著地提高PM2.5浓度日均值预报的准确率;当输入数据的时间精度从一天提高到6小时后,LSTM模型的平均绝对误差从27.39μg/m3降至20.59μg/m3,这种效果的提升在显著变好和显著变差的天气情况下更明显;华北地区PM2.5浓度分布有明显的时空特征,第一空间模态为同增同减,第二空间模态为南北反向;北京市PM2.5浓度与内蒙古、河北及天津等地区前一天的PM2.5相关.利用CNN-LSTM混合模型学习华北地区PM2.5的时空信息,能进一步提高北京市PM2.5浓度的预报水平,使得误差降低至17.36μg/m3.

神经网络、PM2.5预报、时间精度、空间特征

56

国家自然科学基金;广西壮族自治区特聘专家专项经费

2020-06-10(万方平台首次上网日期,不代表论文的发表时间)

共10页

417-426

相关文献
评论
暂无封面信息
查看本期封面目录

北京大学学报(自然科学版)

0479-8023

11-2442/N

56

2020,56(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn