基于集成迁移学习的新装备装甲车辆分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12382/bgxb.2022.0412

基于集成迁移学习的新装备装甲车辆分类

引用
在复杂的陆战环境中,图像分类技术是快速区分装甲车辆目标的一种重要手段.针对现有基于卷积神经网络(CNN)的主流分类算法对于训练样本的数量及质量有较高要求,在新装备装甲车辆图像分类任务中精度不足的问题,提出一种集成了两个基于不同学习策略的CNN的迁移学习方法.一个CNN在图像样本较易获取、数量充足的老式装甲车辆图像数据集上进行预训练,学习局部细节特征;另一个CNN在图像质量较低的新装备装甲车辆的虚拟图像数据集上进行预训练,学习全局特征.对预训练好的CNN均利用数量有限的新装备装甲车辆真实样本按照不同策略微调,提升表征能力.设计基于Optuna超参数优化框架的自学习模型集成机制,可对两个CNN的输出进行自主加权优化,进一步提高算法的分类准确率.实验结果表明,与随机初始化训练的同一模型相比,所提方法在新装备装甲车辆图像分类任务中准确率提高7%,有效缓解了训练样本偏少的问题.

迁移学习、卷积神经网络、装甲车辆分类、特征提取、模型集成机制

44

TP181(自动化基础理论)

国家自然科学基金;中国博士后科学基金

2023-09-08(万方平台首次上网日期,不代表论文的发表时间)

共10页

2319-2328

相关文献
评论
暂无封面信息
查看本期封面目录

兵工学报

1000-1093

11-2176/TJ

44

2023,44(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn