磁共振影像组学在鉴别中低危和高危前列腺癌中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13898/j.cnki.issn.1000-2200.2022.01.023

磁共振影像组学在鉴别中低危和高危前列腺癌中的应用

引用
目的:建立基于支持向量机学习算法的影像组学模型,研究其鉴别高危前列腺癌与中低危前列腺癌的诊断效能.方法:回顾性分析265例经病理证实的前列腺癌病人,其中高危病人155例,中低危病人110例.所有病人术前均进行MRI检查.由两位放射医师使用达尔文智能科研平台手动勾画感兴趣区,从每例病人的T2WI和ADC图中分别提取影像组学特征,采用受试者工作特征(ROC)曲线及ROC曲线下面积(AUC)验证影像组学特征的鉴别效能,对比T2WI、ADC及T2WI+ADC的诊断价值.结果:共筛选出10个影像组学特征(6个ADC序列特征,4个T2WI序列特征)可以用来鉴别高危及中低危前列腺癌.仅使用T2WI获得的组学模型鉴别效能较低,训练队列AUC为0.70(95%CI 0.63~0.77),验证队列AUC为0.58(95%CI 0.47~0.68).ADC图组学模型预测效能较好,训练队列AUC为0.79(95%CI 0.72~0.85),验证队列AUC为0.78(95%CI 0.68~0.86).T2WI联合ADC图构建的影像组学模型表现出最优预测效能,训练队列AUC为0.84(95%CI 0.78~0.89),验证队列AUC为0.80(95%CI 0.69~0.88).结论:本研究构建的基于T2WI和ADC图的影像组学模型在一定程度上对中低危及高危前列腺癌病人进行区分,为前列腺癌的分期提供了一种无创的预测方式,指导治疗方案的选择.

前列腺癌;影像组学;磁共振成像;危险分层;支持向量机

47

R737.25;R445.2(肿瘤学)

安徽省教育厅自然科学研究重点项目KJ2019A0402

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

90-93,98

相关文献
评论
暂无封面信息
查看本期封面目录

蚌埠医学院学报

1000-2200

34-1067/R

47

2022,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn