马尾松毛虫幼虫发生严重程度的预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13610/j.cnki.1672-352x.20171017.031

马尾松毛虫幼虫发生严重程度的预测研究

引用
为了提高马尾松毛虫幼虫发生严重程度的预测精度,寻求简便准确的预测方法,采用时间平稳序列法、回归预测法、马尔科夫链法、BP神经网络法和列联表多因子多级相关分析法对安徽省潜山县1983-2014年的马尾松毛虫越冬代、一代和二代幼虫发生的严重程度进行预测,研究历史符合率,并用2015年和2016年的实际发生情况验证.结果表明,平稳时间序列法,列联表多因子多级相关分析法计算简便,预测结果准确;BP神经网络法和马尔科夫链法预测结果非常准确.回归模型中以当代卵盛期卵量预测当代幼虫发生严重程度的一元回归模型的预测结果准确性高,其余一元回归模型预测结果稍差,多元回归模型和逐步回归模型优于一元回归模型.BP神经网络模型是一种理想的预测模型.

马尾松毛虫、预测、平稳时间序列、BP神经网络、马尔科夫链

44

S763.305(森林保护学)

国家林业公益性行业科研专项201404410

2017-12-14(万方平台首次上网日期,不代表论文的发表时间)

共12页

882-893

相关文献
评论
暂无封面信息
查看本期封面目录

安徽农业大学学报

1672-352X

34-1162/S

44

2017,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn