变量筛选在茶叶咖啡碱近红外光谱定量分析模型中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

变量筛选在茶叶咖啡碱近红外光谱定量分析模型中的应用

引用
研究利用近红外光谱分析技术定量测定茶叶中咖啡碱的含量,目的是通过变量筛选简化模型并提高预测精度.试验中以135个来自大闽食品公司的茶叶作为研究对象,利用基于小波系数蒙特卡罗无信息变量消除法(WT-MC-UVE)进行变量筛选并结合偏最小二乘法(PLS)建立咖啡碱定量分析模型,选择交互验证均方根误差(RMSECV)和预测集均方根误差(RMSEP)以及预测相关系数(Rp)作为模型的评价指标.应用 WT-MC-UVE筛选的90个变量所建立的模型,交互验证均方根误差,预测卷均方根误差,预测相关系数分别为0.1248、0.1611和0.9574.结果表明,该方法有效可行.

近红外、咖啡碱、WT-MC-UVE、变量筛选

TS272;O657.33(食品工业)

2013-04-28(万方平台首次上网日期,不代表论文的发表时间)

共4页

262-265

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn