基于改进Cascade R-CNN网络模型的防振锤缺陷识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2022.05.009

基于改进Cascade R-CNN网络模型的防振锤缺陷识别

引用
针对高压输电线路中防振锤的背景复杂、缺陷目标小及类别数量不均衡问题,提出一种改进的Cascade R-CNN(cascade region convolutional neural networks)网络模型,用于防振锤的缺陷识别.将SE(squeeze and excitation)模块嵌入ResNet-101(residual network-101),以增强网络学习能力.引入FPN(feature pyramid networks)模块提取多尺度的缺陷特征.利用Focal Loss函数降低Cascade R-CNN候选区域提取模块的分类损失.实验结果表明:相对于其他4种模型,该文模型有相对高的识别准确率;识别防振锤缺陷的效果良好.因此,该文模型具有有效性.

电力巡检、深度学习、缺陷识别、防振锤、Cascade R-CNN

46

TP391.4(计算技术、计算机技术)

国家自然科学基金61672032

2022-09-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

64-70

相关文献
评论
暂无封面信息
查看本期封面目录

安徽大学学报(自然科学版)

1000-2162

34-1063/N

46

2022,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn