基于Seq2point和SERNet的非侵入式负荷分解及识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2022.04.007

基于Seq2point和SERNet的非侵入式负荷分解及识别

引用
为了提高负荷的分解及识别准确度,提出基于序列到点(sequence-to-point,简称Seq2point)和挤压与激励的残差网络(squeeze-and-excitation residual network,简称SERNet)的非侵入式负荷分解和识别方法.使用残差网络提取信息,引入注意力机制挤压和激励网络,对提取的信息进行自适应校准.通过全连接网络映射得到负荷分解结果,进而识别负荷.算例分析结果表明:与其他4种方法比较,该方法有更高的分解及识别准确度.

非侵入式负荷分解、滑动窗口法、序列到点、残差学习、挤压和激励网络

46

TP18;TM714(自动化基础理论)

国家自然科学基金;安徽省科技重大专项

2022-07-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

38-44

相关文献
评论
暂无封面信息
查看本期封面目录

安徽大学学报(自然科学版)

1000-2162

34-1063/N

46

2022,46(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn