基于中心差分卷积的自监督学习方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2022.04.005

基于中心差分卷积的自监督学习方法研究

引用
作为无监督学习的一个分支,自监督学习可以从大量无标签数据中学习到有用的特征,是近期一个热门的研究方向.基于前置任务和对比学习的自监督学习已经得到了大量的研究,但对于卷积操作的选择还没有得到足够的重视.将中心差分卷积神经网络引入自监督学习,探究了卷积操作对自监督学习性能的影响.实验结果显示,加入了中心差分卷积神经网络的Resnet18模型相比普通模型在下游分类任务上的性能提升了4.14%,在几乎未增加计算量的情况下,与Resnet50性能相当.

无监督学习、自监督学习、对比学习、中心差分卷积神经网络

46

TP18(自动化基础理论)

国家自然科学基金61773160

2022-07-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

24-29

相关文献
评论
暂无封面信息
查看本期封面目录

安徽大学学报(自然科学版)

1000-2162

34-1063/N

46

2022,46(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn