组合多任务与迁移学习的故事发展预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2021.06.004

组合多任务与迁移学习的故事发展预测

引用
使用机器挖掘故事中的潜在语义关系从而推断故事发展方向,是当前自然语言处理领域研究的热点之一.现有主流方法存在的共性问题是神经网络理解文本能力有限,模型的关注点均集中在挖掘单个语义信息上,导致模型泛化能力差,使得机器仅能通过单个语义理解文本.针对上述问题,作者提出一种组合多任务与迁移学习的新模型,该模型由共享层、特定任务层、迁移层以及组合层构成.模型的前两层组合语言模型与多任务学习,解决神经网络理解能力不足的问题,第二、三层训练多个语义任务,第四层融合多个语义信息,克服以往模型仅从单个语义理解文本的缺点.对比实验及消融实验表明,新模型预测精度与主流方法相比有较为显著的提升,各特定任务的语义信息有助于预测故事发展方向.

故事发展方向;语言模型;多任务学习;迁移学习

45

TP391.1(计算技术、计算机技术)

国家自然科学基金资助项目;电子信息类专业硕士协同创新平台建设项目

2021-11-17(万方平台首次上网日期,不代表论文的发表时间)

共10页

19-28

相关文献
评论
暂无封面信息
查看本期封面目录

安徽大学学报(自然科学版)

1000-2162

34-1063/N

45

2021,45(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn