基于CEEMDAN算法及NARX神经网络的短期负荷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2021.02.007

基于CEEMDAN算法及NARX神经网络的短期负荷预测

引用
为了提高电力负荷预测精度,提出一种基于自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,简称CEEMDAN)算法和外部输入非线性自回归(nonlinear auto regressive with exogenous inputs,简称NARX)神经网络的短期负荷预测模型.首先,通过CEEMDAN算法对电力负荷原始信号进行分解,得到若干个本征模态函数分量和1个残差分量;然后,将得到的若干个本征模态函数分量和1个残差分量输入NARX神经网络进行预测;最后,将各分量的预测结果进行叠加得到短期负荷预测的最终结果.实验结果表明:CEEMDAN算法与NARX神经网络相结合的负荷预测模型有较强的收敛性能,能减少噪声对预测结果的不良影响、有效提高预测精度.

预测精度、CEEMDAN、本征模态函数、NARX神经网络、短期负荷预测

45

TM715(输配电工程、电力网及电力系统)

国家自然科学基金资助项目;安徽省科技重大专项

2021-03-25(万方平台首次上网日期,不代表论文的发表时间)

共9页

38-46

相关文献
评论
暂无封面信息
查看本期封面目录

安徽大学学报(自然科学版)

1000-2162

34-1063/N

45

2021,45(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn