改进型基于LSTM的股票预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2019.06.005

改进型基于LSTM的股票预测方法

引用
针对当前长短时循环神经网络(long short-term memory,简称LSTM)在对股票预测时普遍存在的滞后性问题,提出一种改进型基于LSTM的股票预测方法.首先通过多维度向量输入,选取与股票价格相关系数较高的其他公司的每日股票收盘价,结合预测股票自身价格数据作为模型的输入向量;其次通过特征工程选取不同的特征向量作为输入向量,通过反复训练得到可以明显降低预测滞后性的特征向量组合;最后通过对与股票公司相关的新闻文本进行情感分析,将得到的情感分值作为模型输入向量.腾讯公司股票的预测结果表明,该方法在提高预测准确度的同时,明显改善了预测的滞后性.

LSTM、多维向量、特征工程、情感分析

43

TP29(自动化技术及设备)

国家自然科学基金资助项目61972455;上海第二工业大学应用数学学科基金资助项目XXKPY1604

2019-11-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

36-42

相关文献
评论
暂无封面信息
查看本期封面目录

安徽大学学报(自然科学版)

1000-2162

34-1063/N

43

2019,43(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn