10.3969/j.issn.1000-2162.2017.01.004
图核函数研究现状与进展
核方法具有坚实的理论基础和广泛的应用,已引起了各领域的关注.基于核的机器学习方法不仅适用于以特征向量表示的模式,也适用于结构化数据的模式.前者对应的是向量核方法,后者对应的是图核方法.图核对结构化数据具有强大而灵活的表示形式,其不仅能描述研究对象或模式的特性,还能反映构成这个物体不同部分之间的结构信息.目前,基于图核的机器学习方法在模式识别、机器学习、机器视觉、数据挖掘等相关研究领域得到了极为广泛的关注与应用,已成为结构数据描述方法和应用领域的一个重要研究方向.论文从使用最为广泛的基于R-convolution的图核谈起,总结了图核研究的意义,着重回顾和讨论图核函数的基本理论、基本分类、国内外研究现状,并进一步指出图核研究的发展方向.
结构化、图核、机器学习
41
TP18(自动化基础理论)
国家自然科学基金资助项目61503422,61602535
2017-03-14(万方平台首次上网日期,不代表论文的发表时间)
共8页
21-28