图核函数研究现状与进展
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2017.01.004

图核函数研究现状与进展

引用
核方法具有坚实的理论基础和广泛的应用,已引起了各领域的关注.基于核的机器学习方法不仅适用于以特征向量表示的模式,也适用于结构化数据的模式.前者对应的是向量核方法,后者对应的是图核方法.图核对结构化数据具有强大而灵活的表示形式,其不仅能描述研究对象或模式的特性,还能反映构成这个物体不同部分之间的结构信息.目前,基于图核的机器学习方法在模式识别、机器学习、机器视觉、数据挖掘等相关研究领域得到了极为广泛的关注与应用,已成为结构数据描述方法和应用领域的一个重要研究方向.论文从使用最为广泛的基于R-convolution的图核谈起,总结了图核研究的意义,着重回顾和讨论图核函数的基本理论、基本分类、国内外研究现状,并进一步指出图核研究的发展方向.

结构化、图核、机器学习

41

TP18(自动化基础理论)

国家自然科学基金资助项目61503422,61602535

2017-03-14(万方平台首次上网日期,不代表论文的发表时间)

共8页

21-28

相关文献
评论
暂无封面信息
查看本期封面目录

安徽大学学报(自然科学版)

1000-2162

34-1063/N

41

2017,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn