几类含5次强非线性项数理方程的尖峰孤子解
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-2162.2014.04.007

几类含5次强非线性项数理方程的尖峰孤子解

引用
运用积分法和待定系数法求出含5次强非线性项的 Lienard 方程的几类尖峰孤子解,并据此求出力学中具5次非线性项的波动方程、导数非线性 Schr?dinger 方程和 Kundu 方程的尖峰孤子解。该文方法也适用于求 Ablowitz 方程、Gerdjikov-Ivanov 方程、广义 PC 方程、广义导数非线性 Schr?dinger 方程及含有3次非线性项波动方程的尖峰孤子解。

尖峰孤子解、Lienard方程、非线性波方程、非线性Schr?dinger方程、Kundu方程

O411.1(理论物理学)

河南省电力公司电力科学研究院科研基金

2014-08-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

37-44

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn